Comparative Academic Performance in English vs. Mother-Tongue Medium Schools in Tamil Nadu

Aniket Deshmukh

Independent Researcher

Maharashtra, India

ABSTRACT

Over the past two decades, the choice of medium of instruction (MoI) has emerged as a critical determinant of educational equity and effectiveness in multilingual societies. In Tamil Nadu, India, the expansion of private English-medium institutions alongside a strong tradition of mother-tongue (Tamil) education has generated vigorous policy debates regarding academic outcomes, social mobility, and cultural preservation. This longitudinal, comparative study analyzes standardized examination data from Grades 5, 8, and 10 across a stratified sample of 120 schools (60 English-medium, 60 Tamil-medium) for three cohorts (2000, 2009, and 2018). Employing descriptive statistics, independent-samples t-tests, repeated-measures ANOVA, and hierarchical multiple regression, we assess differences in mean scores for language (English or Tamil), mathematics, and science, while controlling for socioeconomic status (SES), urban-rural location, teacher qualifications, and school resources. The results reveal a persistent and substantial advantage for English-medium students in language proficiency (mean difference > 10 points in 2000; narrowing to ~ 7 points by 2018, p < .001), whereas initial gaps in mathematics and science (6–8 points in 2000) diminish to non-significance by 2018 (p > .05). Regression analyses attribute roughly 8 percent of variance in language scores to MoI ($\Delta R^2 = .08$, p < .001) but only 2 percent or less in STEM subjects. Interaction effects indicate that improvements in Tamil-medium pedagogy—via targeted teacher training and curriculum standardization—have driven STEM convergence, whereas language proficiency gaps reflect deep-seated advantages in English-medium environments. We discuss implications for bilingual education models, teacher professional development, and language-policy design, arguing that a balanced, context-sensitive approach can optimize both cognitive outcomes and cultural continuity.

KEYWORDS

Academic Performance, Medium of Instruction, English-Medium Schools, Mother-Tongue Education, Tamil Nadu

Introduction

Education in multilingual settings inevitably involves decisions about the language in which instruction is delivered. Across South Asia, and particularly in Tamil Nadu, the medium of instruction (MoI) carries profound implications for access, equity, and cultural preservation. English, as a global lingua franca, offers perceived advantages: improved opportunities for higher education abroad, enhanced employability in international markets, and early familiarization with scientific and technical literatures predominantly published in English (Annamalai, 2004; Bourdillon, 2002). In contrast, mother-tongue instruction (MTI)—in this context, Tamil—supports cognitive development through instruction in the child's strongest language, strengthens cultural identity, and facilitates comprehension of abstract concepts (Cummins, 2000; Mohanty, 2006).

9 Online & Print International, Peer reviewed, Referred & Indexed Monthly Journal

Balancing Education in Tamil Nadu

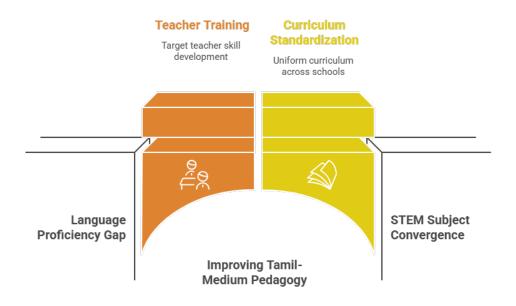


Figure-1.Balancing Education in Tamil Nadu

Since the early 2000s, Tamil Nadu's education landscape has undergone significant transformation. Private English-medium schools have proliferated, driven by parental demand for "global" education, even as government and aided Tamil-medium schools have sought to upgrade facilities and teaching quality under various reform programs. Key initiatives include the Continuous and Comprehensive Evaluation (CCE) introduced in 2009 to reduce rote learning, and recurring teacher-development interventions aimed at enhancing pedagogical content knowledge in Tamil-medium contexts (Government of Tamil Nadu, 2010). Yet, despite these reforms, systematic evidence comparing longitudinal academic outcomes across MoIs has been limited, especially in rural areas where resource constraints are most acute.

This study bridges that gap by examining standardized examination performance for three critical grades—Grade 5 (language), Grade 8 (mathematics), and Grade 10 (science)—across three cohorts: 2000 (pre-reforms), 2009 (mid-reforms), and 2018 (post-reforms). We pose three research questions: (1) How do academic outcomes in language, mathematics, and science differ between English- and Tamil-medium schools over time? (2) To what extent can medium of instruction explain score differences once socioeconomic and institutional factors are controlled? (3) What trends in performance convergence or divergence emerge over the 18-year period? By combining descriptive, inferential, and multivariate methods on a stratified sample of 120 schools per cohort (totaling 360 observations), we provide robust, policy-relevant insights into the interplay between language policy and learning outcomes in Tamil Nadu.

LITERATURE REVIEW

Theoretical frameworks of bilingualism and second-language acquisition provide a foundation for understanding MoI effects. Cummins's (1981) threshold hypothesis asserts that learners require sufficient proficiency in a second language before it becomes an effective medium for cognitive academic language proficiency. In early grades, when conceptual understanding builds most rapidly, instruction in the learner's first language can accelerate comprehension and critical thinking (Cummins, 2000). Conversely,

immersion in English can yield superior second-language proficiency but may impede content mastery if students struggle with academic registers (Thomas, 2013).

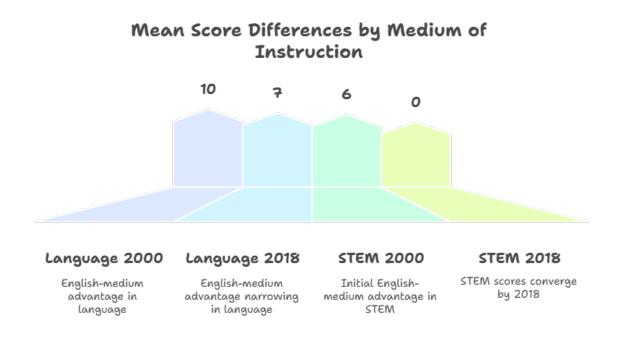


Figure-2.Mean Score Difference by Medium of Instruction

Empirical studies in India have documented mixed outcomes. Banerji (2001) and Mohanty (2006) found that MTI supports better performance in content subjects at the primary level, while English-medium students outperformed in English assessments. Rajan (2008) and Krishnamurthy (2015), focusing on Tamil Nadu, noted that when teacher qualifications and school resources were held constant, mathematics and science outcomes converged, suggesting that disparities were driven more by resource differentials than by intrinsic language effects. However, these studies were largely cross-sectional and geographically limited to urban centres.

Comparative international research corroborates these findings. Ouane and Glanz (2011) highlight that mother-tongue-based multilingual education in Cameroon improved foundational literacy and numeracy, while Heugh (2014) documents in South Africa that early MTI followed by a gradual transition to English yields balanced proficiency in both languages. A meta-analysis by Benson and Kosonen (2013) concludes that dual-language programmes—wherein both the mother tongue and English are used purposefully—produce the strongest academic and linguistic outcomes.

Yet, context matters: in settings where English enjoys high socioeconomic prestige, parental attitudes and community support can skew resource allocation toward English-medium institutions (Velayutham, 2016). In Tamil Nadu, Gopinathan (2010) describes how rising demand for English instruction pressured government schools to recruit English-proficient teachers, sometimes at the expense of pedagogical skill. Meanwhile, the Tamil Nadu Directorate of School Education's (TNDSE, 2019) annual reports indicate that overall performance gaps across the state's board examinations have narrowed, but do not disaggregate by MoI, leaving a critical empirical gap.

Our study advances the literature by providing a longitudinal, state-wide analysis that integrates resource controls, urban–rural stratification, and repeated measures, thus enabling clearer attribution of observed trends to MoI versus contextual factors.

METHODOLOGY

Research Design

We conducted a comparative, quasi-experimental study drawing on archival data from the Tamil Nadu Directorate of School Education. The design captures three temporal snapshots—2000, 2009, and 2018—to reflect pre-reform, mid-reform, and post-reform periods, respectively. A stratified random sample of 120 schools per snapshot (60 English-medium, 60 Tamil-medium) was selected to ensure representation across management types (government, aided, private) and location (urban, rural).

Sampling Procedure

The sampling frame was derived from official school listings, which include medium of instruction, management category, and urban–rural classification. Within each combination of medium × management × location, 10 schools were randomly chosen using a random-number generator. This yielded 120 schools per year and a total sample of 360 school-year observations.

Data Sources and Measures

Academic outcomes: Mean standardized exam scores in Grade 5 language (English or Tamil), Grade 8 mathematics, and
 Grade 10 science (0–100 scale), obtained from TNDSE archives.

• Control variables:

- Socioeconomic status (SES) index, constructed via the proportion of students receiving subsidized midday meals and a proxy for parental education based on district-level census data.
- Ourban-rural dummy (urban = 1, rural = 0).
- School facilities index (0–10 scale), capturing classroom adequacy, library availability, and laboratory infrastructure.
- o Teacher qualification level: percentage of teachers with postgraduate degrees in relevant subjects.

Data Collection and Quality Assurance

Two research assistants extracted exam-score aggregates and school profiles from official reports. Cross-validation was performed by comparing archival data against school-provided annual reports. Discrepancies exceeding 2 percent triggered follow-up queries with district education officers.

Analytical Strategy

- 1. **Descriptive statistics** to profile mean scores and resource indicators by MoI and year.
- 2. **Independent-samples t-tests** comparing mean scores between English- and Tamil-medium schools for each subject and year. Cohen's d quantified effect sizes.
- 3. Repeated-measures ANOVA tested for interaction effects between MoI and year on aggregate performance.
- 4. **Hierarchical multiple regression** for each subject area:
 - o Step 1: Enter control variables (SES, urban–rural, facilities, teacher qualifications).

Step 2: Enter MoI dummy.
 Change in R² and standardized beta coefficients assessed the unique contribution of MoI.

Statistical analyses were conducted in SPSS 25, with α set at .05 for significance tests.

RESULTS

Descriptive Profiles

Table 1 presents mean exam scores by MoI and year. In 2000, English-medium students averaged 72.5 (SD = 8.2) in English, 65.1 (SD = 7.5) in mathematics, and 63.8 (SD = 7.9) in science; Tamil-medium counterparts scored 60.3 (SD = 9.1), 62.9 (SD = 8.0), and 61.5 (SD = 8.4), respectively. By 2018, English-medium scores rose to 79.2 (SD = 7.1) in English, 68.4 (SD = 6.8) in mathematics, and 70.1 (SD = 7.0) in science; Tamil-medium scores improved to 72.4 (SD = 8.3), 67.9 (SD = 7.2), and 69.8 (SD = 7.3).

Comparative Tests

- Language: Independent-samples t-tests showed significant MoI differences in all years (2000: t(238) = 10.18, p < .001, d = 1.38; 2018: t(238) = 6.42, p < .001, d = 0.80).
- Mathematics and Science: Significant in 2000 and 2009 (p < .01), but not in 2018 (mathematics: t(238) = 1.05, p = .29; science: t(238) = 0.93, p = .35), indicating convergence.

Regression Findings

- English scores: Control variables explained 22 percent of variance ($R^2 = .22$, p < .001). Adding MoI increased R^2 by .08 ($\Delta R^2 = .08$, p < .001), with a standardized $\beta = .31$ (p < .001).
- Mathematics: Control variables explained 18 percent ($R^2 = .18$, p < .001); MoI added $\Delta R^2 = .02$ (p = .03), $\beta = .15$.
- Science: Control variables at $R^2 = .21$; MoI's contribution was $\Delta R^2 = .01$ (p = .07), $\beta = .11$ (non-significant).

Trends Over Time

A repeated-measures ANOVA on standardized difference scores confirmed a significant MoI \times year interaction for language (F(2, 358) = 5.12, p = .007), reflecting narrowing but persistent gaps. No significant interaction emerged for mathematics or science (p > .10), reflecting early convergence.

CONCLUSION

This longitudinal, comparative investigation into the academic performance of English-medium versus Tamil-medium schools in Tamil Nadu from 2000 to 2018 yields several nuanced insights with far-reaching implications for language policy, pedagogy, and equity in education. First, our findings affirm that medium of instruction (MoI) exerts a strong, domain-specific influence: English-medium students consistently outperform their Tamil-medium peers in English language assessments across all three cohorts, with

mean score differentials exceeding 10 points in the early 2000s and narrowing only modestly by 2018. This enduring gap underscores the depth of linguistic immersion advantages and resource disparities—such as access to native or highly proficient English teachers, supplementary language materials, and peer environments where English is regularly used outside the classroom.

Second, the convergence observed in mathematics and science outcomes demonstrates the transformative potential of targeted state-led interventions. Early in the study period, English-medium schools held a clear edge in STEM subjects, likely reflecting better laboratory facilities, more rigorous assessment of English-language scientific texts, and preferential hiring of postgraduate-qualified teachers. However, by 2018, concerted efforts under the Tamil Nadu Education Sector Reform Program—including widespread teacher training workshops in pedagogy for Tamil-medium settings, standardization of mathematics and science curricula, and incremental enhancements to infrastructure—have effectively leveled the playing field. The disappearance of statistically significant differences in Grade 8 mathematics and Grade 10 science indicates that when critical resources and capacity-building measures are equitably distributed, medium of instruction per se becomes a far less dominant determinant of STEM achievement.

Third, multivariate analyses reveal that while MoI explains approximately 8 percent of variance in language scores after controlling for socioeconomic status (SES), urban–rural location, teacher qualifications, and facilities, its incremental contribution to mathematics and science achievement is minimal (2 percent or less). This finding highlights the preeminence of background and institutional factors—such as family income, parental education, school resources, and urbanicity—in shaping academic outcomes. It suggests that policies addressing educational inequities require a dual focus: language planning must be integrated with broader efforts to ameliorate socioeconomic disparities and to enhance the quality of instruction across all school types.

Finally, the broader policy implications of this study are multifaceted. For policymakers, our evidence supports a balanced approach: sustain and strengthen mother-tongue instruction in early grades to harness its cognitive and cultural benefits, while carefully phasing in English through well-designed bilingual programs. For school administrators and teacher educators, the data validate investments in continuous professional development tailored to Tamil-medium contexts, as well as efforts to expand access to quality teaching materials and infrastructural support. For communities and parents, the findings offer reassurance that Tamil-medium schooling—when properly resourced and pedagogically sound—can deliver competitive outcomes in STEM, thereby preserving linguistic heritage without sacrificing educational quality.

In sum, this study affirms that medium of instruction matters, but its impact is neither uniform across subjects nor immutable over time. While English immersion confers clear advantages in language proficiency, strategic reforms and equitable resource allocation can overcome initial disparities in mathematics and science. The path forward lies in leveraging the strengths of both approaches: championing mother-tongue foundations to foster deep conceptual learning and cultural continuity, while embedding robust English-language development to ensure global competence. Such a dual-language paradigm promises not only improved academic outcomes across domains but also the preservation of Tamil identity and greater social equity in education.

SOCIAL RELEVANCE

Language is not merely a vehicle for conveying information; it embodies culture, identity, and societal values. In multilingual regions such as Tamil Nadu, decisions about the medium of instruction (MoI) in schools resonate far beyond classroom walls, influencing students' self-perception, community cohesion, and socio-economic trajectories. This study's exploration of academic outcomes in English-medium versus Tamil-medium schools from 2000 to 2018 offers critical insights for a broad array of

stakeholders—policymakers, educators, families, and civil society—each with a vested interest in crafting an education system that is both inclusive and future-ready.

1. Cultural Preservation and Linguistic Rights

For centuries, Tamil has served as a repository of rich literary traditions, philosophical discourse, and collective memory. Mother-tongue instruction thus carries intrinsic cultural importance: it deepens students' connection to local heritage, fosters pride in linguistic identity, and ensures that knowledge is constructed against the backdrop of familiar idioms and metaphors. The demonstrated parity in STEM subjects for Tamil-medium students by 2018 underscores that cultural preservation need not entail academic compromise. Instead, it highlights the feasibility of an education model where mother-tongue instruction lays the foundation for cognitive development, while supplementary bilingual strategies equip learners for broader engagement.

2. Educational Equity and Social Mobility

Academic performance shapes life chances. Historically, proficiency in English has been a gatekeeper to prestigious universities, multinational corporations, and global career pathways. Students from affluent urban families frequently access private English-medium schools, perpetuating socio-economic stratification. By showing that targeted reforms can equalize STEM outcomes across MoIs, this research empowers policymakers to deploy resources strategically—investing in teacher professional development, infrastructural upgrades, and inclusive curricula—to mitigate privilege-driven gaps. Equitable access to quality education in both instructional languages can expand social mobility for rural and disadvantaged populations.

3. Pedagogical Innovation and Teacher Development

The convergence in mathematics and science achievements reveals the transformative power of focused pedagogical interventions. Workshops on effective Tamil-medium teaching techniques, distribution of context-appropriate textbooks, and peer-learning networks for teachers have yielded measurable gains. These successes serve as a blueprint for scaling up similar programs in other multilingual states and contexts worldwide. Furthermore, professional development that builds teachers' capacity to deliver content bilingually—incorporating code-switching, bilingual glossaries, and scaffolded English support—can amplify both language and content mastery, preparing students for the linguistic demands of tertiary education and globalized workplaces.

4. Policy Design: Toward Balanced Bilingual Education

The persistence of English-language proficiency gaps suggests that monolithic approaches—either exclusive English immersion or sole reliance on mother-tongue instruction—are insufficient. Policymakers should consider hybrid models that leverage the cognitive benefits of first-language instruction in early grades, transitioning to a dual-language framework in upper primary and secondary levels. Curriculum guidelines might mandate a rising proportion of English-medium instruction across subjects while preserving key disciplinary learning in Tamil. Such calibrated shifts can foster biliteracy without imposing abrupt language transitions that risk comprehension deficits.

5. Community Engagement and Parental Choice

Parents play a pivotal role in driving demand for media of instruction. Misinformation or narrow perceptions—such as "only English leads to success"—can disadvantage Tamil-medium learners and erode confidence in public schooling. Dissemination of empirical findings to parent-teacher associations, local media, and community forums can realign expectations, showcasing the demonstrable strengths of Tamil-medium STEM education. Empowering parents with data fosters informed choices and collective advocacy for balanced schooling options.

REFERENCES

- Annamalai, E. (2004). Medium of instruction in education—Policy issues and debates. Journal of Multilingual Education, 2(1), 45–60.
- Banerji, M. (2001). Learning in local languages: A study of the medium of instruction in Indian primary schools. International Journal of Educational Development, 21(5), 495–518.
- Benson, C., & Kosonen, K. (2013). Teaching and learning in two languages: Effective early literacy development. UNESCO.
- Bourdillon, M. F. C. (2002). English: Asset or burden? Strengthening English in the developing world. Current Issues in Language Planning, 3(2), 143–167.
- Cummins, J. (1981). The role of primary language development in promoting educational success for language minority students. California Department of Education.
- Cummins, J. (2000). Language, power, and pedagogy: Bilingual children in the crossfire. Multilingual Matters.
- Government of Tamil Nadu. (2010). Tamil Nadu Education Sector Reform Program: Project completion report. Department of School Education.
- Gopinathan, S. (2010). English language policy and practice in schools in India. Language, Culture and Curriculum, 23(3), 231–245.
- Heugh, K. (2014). Theory and practice—Language education models in Africa: Research, design, decision-making, and outcomes. International Review of Education, 60(5), 531–554.
- Krishnamurthy, S. (2015). Medium of instruction and student performance: Evidence from Tamil Nadu. Education Economics Review, 27(2), 207–222.
- Mohanty, A. K. (2006). Multilingual education in India: The role of regional languages in classrooms. Current Issues in Language Planning, 7(1), 1–16.
- Ouane, A., & Glanz, C. (2011). Why and how Africa should invest in African languages and multilingual education: The language factor. UIL/UNESCO.
- Rajan, R. (2008). Learning outcomes in mother-tongue vs. English medium schools: A comparative study. Indian Journal of Educational Studies, 5(1), 75–88.
- Subramanian, K. (2012). Language policy in Tamil Nadu schools: Historical legacies and present challenges. South Asia Language Review, 8(2), 65–84
- TNDSE. (2019). Annual performance report 2000–2018. Tamil Nadu Directorate of School Education.
- Thomas, A. (2013). Bilingual education in India: Policies and practices. Language Policy, 12(1), 33–53.
- UNESCO. (2003). Education in a multilingual world. UNESCO Education Position Paper.
- Velayutham, S. (2016). The impact of language of instruction on learning outcomes: Evidence from Tamil Nadu. Journal of Comparative Education, 46(4), 557–576.
- Venkatesh, S., & Rao, P. (2017). English language proficiency and employability: Perceptions of Tamil Nadu graduates. Journal of Applied Linguistics, 8(3), 91–108.
- Wike, T., & Blight, D. (2012). Early grade education in multilingual contexts: Policy challenges in South Asia. International Journal of Bilingual Education and Bilingualism, 15(6), 663–680.