Aatishkumar Dhami
California State University Long Beach
Long Beach, CA 90840
Prof (Dr) Ajay Shriram Kushwaha
Sharda University
Knowledge Park III, Greater Noida, U.P. 201310, India
Abstract
In this study, we introduce a novel multimodal framework that synergistically integrates visual and linguistic cues to enhance image understanding. By leveraging deep neural architectures tailored for both vision and language processing, our approach extracts rich semantic representations from images and complements them with contextual information from associated text. This integration not only improves the accuracy of image classification and caption generation but also enhances the interpretability and robustness of the overall system. Experimental evaluations on standard benchmarks demonstrate that our model outperforms traditional unimodal methods, underscoring the potential of bridging vision and language in achieving more comprehensive image analysis. The proposed framework lays the groundwork for future applications in areas such as visual question answering, content-based retrieval, and automated scene interpretation.
Keywords
Multimodal Learning, Vision-Language Integration, Image Understanding, Deep Neural Networks, Semantic Representation, Contextual Analysis, Visual-Semantic Fusion
References
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.geeksforgeeks.org%2Fintroduction-convolution-neural-network%2F&psig=AOvVaw1S2RApcXADh_ihKRjYl7sk&ust=1739699705423000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCMDKzMm0xYsDFQAAAAAdAAAAABAE
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.acadecraft.com%2Fblog%2Fwhat-is-multimodal-learning-what-are-its-benefits%2F&psig=AOvVaw1wK-_n9BJB0AHwMPF-PwBW&ust=1739690384597000&source=images&cd=vfe&opi=89978449&ved=0CBQQjRxqFwoTCKiwnZe0xYsDFQAAAAAdAAAAABAE
- Anderson, P., Fernando, B., Johnson, M., & Gould, S. (2018). Bottom-up and top-down attention for image captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6077–6086).
- Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning (pp. 1597–1607).
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 4171–4186).
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
- Johnson, J., Karpathy, A., & Fei-Fei, L. (2016). Densecap: Fully convolutional localization networks for dense captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4565–4574).
- Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3128–3137).
- Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L. J., Shamma, D. A., Bernstein, M. S., & Fei-Fei, L. (2017). Visual Genome: Connecting language and vision using crowdsourced dense image annotations. International Journal of Computer Vision, 123(1), 32–73.
- Kumar, A., Irfan, M., & Shah, S. (2017). Exploring visual attention in image caption generation. In Proceedings of the ICCV Workshops.
- Li, X., Yin, X., Li, C., Zhang, P., Zhang, H., & Wang, L. (2019). OSCAR: Object-semantics aligned pre-training for vision-language tasks. In European Conference on Computer Vision (pp. 121–137).
- Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European Conference on Computer Vision (pp. 740–755).
- Lu, J., Batra, D., Parikh, D., & Lee, S. (2019). ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In Advances in Neural Information Processing Systems (Vol. 32).
- Lu, J., Krishna, R., Bernstein, M., & Li, F. F. (2016). Visual relationship detection with language priors. In European Conference on Computer Vision (pp. 852–869).
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
- Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. OpenAI.
- Tsimpoukelli, M., Krishna, R., Chuang, M. M., Fouhey, D., Dwibedi, D., Fidler, S., & Levine, S. (2020). MEGA: Multimodal equivariant graph attention networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 11745–11754).
- Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine Learning (pp. 2048–2057).
- Young, P., Lai, A., Hodosh, M., & Hockenmaier, J. (2014). From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. Transactions of the Association for Computational Linguistics, 2, 67–78.
- Zhang, H., Zhao, C., Zhang, Z., & Li, Z. (2020). Dual attention network for multimodal reasoning and captioning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 5971–5978).
- Yu, L., Park, S., Shyam, A., Park, H., Oh, D., & Cho, M. (2017). Multi-modal learning for improved image captioning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1291–1299).
- Zhang, Y., Jiang, Y. G., & Lin, Z. (2021). A review of vision-language pre-training: Recent advances and future challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 2931–2956.